Mitigating climate change could be better achieved by regulating land use change than emissions reductions alone.

As the international community works to develop a post-Kyoto framework for responding to climate change over the next several decades, policymakers should give serious consideration to broadening the range of management strategies beyond those conventionally defined as “mitigation”. According to the Intergovernmental Panel on Climate Change (IPCC) mitigation concerns “implementing policies to reduce greenhouse gas (GHG) emissions and enhance sinks,” thus strategies assume reductions in the atmospheric concentration of GHGs to be the sole mechanism through which ongoing changes in climate can be slowed or arrested (1). Under the current mitigation framework, non-emissions-related responses to climate change are characterized as adaptive to rather than preventive of warming phenomena and, as such, generally have not been prioritized in national and international climate change policy. However, an established body of evidence suggests that land use is playing a measurable and significant role in ongoing climate change at multiple geographic scales and through a set of mechanisms independent of GHG emissions (2, 3). In light of this evidence, a more comprehensive and, ultimately, effective framework for climate change management must respond to both the atmospheric and land surface drivers of warming.

The development of such a framework will require not only a redefinition of the terminology employed in national and international agreements but a fundamental reassessment of the governmental structure through which the climate problem is best monitored and managed.

The significance of land use change to emissions of GHGs is well recognized, with approximately one-third of anthropogenic CO₂ emissions since 1850 attributed to land use activities (4). However, recent work suggests alterations in surface fluxes of moisture and energy resulting from land use activities may hold more direct implications for regional scale climate phenomena than associated changes in emissions. The extensive conversion of forested areas to cropland in the Amazon basin, for example, has been linked to markedly drier and warmer climates in that region (5–7); the impact of land use change on temperature was found to be comparable to that of GHG accumulation (7). Likewise, extensive deforestation in both tropical and higher latitude forests has been associated with reduced rainfall, reduced cloud formation, and enhanced shortwave radiative forcing and temperature (8–10). At larger geographic scales, analyses of surface and atmospheric temperature trends across the U.S. and China find land use change to have played an approximately equal or greater role in warming trends over the latter 20th century when compared to changes in atmospheric composition (11, 12). As concluded by a review in Science of this growing body of evidence “[a]long with the diverse influences of aerosols on climate... land use effects may be at least as important in altering the weather as changes in climate patterns associated with greenhouse gases” (2).

The influence of land use on climate is most pronounced at the scale of urbanized regions. Characterized as the “urban heat island effect”, alterations in surface energy and moisture fluxes, combined with anthropogenic heat emissions, can enhance near-surface air temperatures by several degrees Celsius relative to proximate rural areas (13). Recent work has found the conversion of land from forest or cropland to urban uses to be associated with a greater average increase in minimum and maximum temperatures than rural land conversions (14). Further, cities have been found not only to exhibit higher temperatures than proximate rural areas but also to be warming over recent decades at a significantly higher rate (11, 15–17). While urbanized land accounts for only a modest fraction of the global land surface, a rapidly expanding urban population—now accounting for the majority of the global population (18)—is increasingly vulnerable to rates of warming exceeding that of the planet as a whole.

The influence of land use on climate change at the urban scale is clearly observed in temperature trend data for large U.S. cities. Figure 1 presents temperature anomalies (1951–1980 base period) for paired rural and urban weather...
scales a larger phenomenon occurring across multiple geographic regions. As such, the urban heat island effect should be understood to be only the most visible manifestation of climate forcing at the urban scale, Kyoto-based emissions trading schemes may fail to sufficiently safeguard human health in the most heavily populated regions of the planet. Yet, policies concerning land use change are needed at the international level for several important reasons. First, global commodities markets often provide the impetus for large scale land conversions to support agricultural or energy exports. The assessment of climate tariffs on land intensive exports through international agreements, for example, could provide a powerful tool for limiting surface climate forcing. Second, most forms of land-based mitigation carry direct co-benefits for emissions control. Containment of metropolitan decentralization, for example, has been shown both to give rise to changes in climate that may be of the same order of magnitude as changes brought about through the emission of GHGs. As such, the urban heat island effect should be understood to be only the most visible manifestation of a larger phenomenon occurring across multiple geographic scales—a phenomenon better characterized as a “green loss effect” than as something unique to urban areas.

The phrase “greenhouse effect” is widely observed to be a misnomer due to the differing heat transfer mechanisms at work within the atmosphere and within the glass enclosure of a greenhouse. As explained by Burroughs, “The principal mechanism operating in a greenhouse is not the trapping of infrared radiation but the restriction of convective losses when air is warmed by contact with ground heated by solar radiation” (20).

Widely published evidence of the climate forcing effect of land use at urban, regional, and subcontinental scales strongly militates for a broadening of national and international climate management programs to encompass both the atmospheric and land surface drivers of climate change. The next round of international climate negotiations to take place in Copenhagen in December 2009 presents a critical opportunity to formally redefine mitigation along these lines and, in so doing, to develop an entirely new and complementary thrust in climate change management activities.
to preserve regional vegetative cover (21) and to significantly limit the growth of CO$_2$ emissions associated with transportation (22).

Two administrative challenges, in particular, must be addressed in the development of an international land-based mitigation framework. The first concerns the establishment of climate forcing equivalencies by an international body, such as the IPCC, through which the global warming potential of specific land cover changes (per hectare) is equated with the global warming potential of carbon emissions (per tonne). The development of such equivalencies is needed to enable a land-based mitigation program to function within the established framework of existing climate management programs, which employ carbon emissions reduction as a standardized metric for compliance with international agreements. While the degree to which land cover management can mitigate surface climate forcing varies by physiographic and climatic region, and by the management strategies employed, scientific understanding of surface energy budgets, as well as the instrumentation to measure surface energy and moisture fluxes, is sufficiently advanced to support the promulgation of such equivalencies.

Second, the development of a land-based mitigation framework for maximal benefit would require in many countries a governmental administrative structure different from that employed in cap and trade programs. For example, while the U.S. federal government is empowered to regulate industry directly, federal control of land use activities on private property is greatly limited. In general, the power to regulate land use resides with state and local governments, depending on the applicable property laws and other relevant state/municipal practices.

Presently, local government capacity is largely unharvested in climate management structures under consideration by the U.S. Congress. Cap and trade programs establish a top-down implementation framework, through which the federal government sets emissions reduction mandates by industrial sector and relies on state governments for the administration of emissions permitting programs. Presumably, municipal and county governments have only a limited role—e.g., reducing emissions from municipal facilities—in such a management structure. Yet local governments possess extensive powers to manage the land use activities underlying surface climate forcing, in both urban and rural contexts. The development of a framework to more fully exploit these powers would better harness overall national governing capacity to manage climate change and may further reinforce the workings of emission reduction programs if co-benefits from land-based mitigation (e.g., carbon sequestration) are realized.

Figure 2 presents a potential governance structure for a mitigation framework responsive to both the atmospheric and land surface drivers of climate forcing. The actions appearing in gray text illustrate the general emissions management framework instituted by the Kyoto Protocol and those presently under consideration by the U.S. Congress.
Through this framework, binding targets for emissions reductions are put in place through international agreements. Then national governments establish programs to achieve these reductions, with state and local governments playing a more limited or ancillary role. While such a top-down structure is suitable for a national cap and trade program, it is ill-suited to land-based mitigation in the U.S. context, as the primary authority for regulating land use resides with local and state governments.

The actions presented in black text illustrate a potential structure for a land-based mitigation framework. The land use planning activities of municipal and county governments, with the exception of federally managed lands, provide the most direct regulatory means of managing surface energy and atmospheric temperature fronts. Thereby, States governments can play a central role in such a framework through requiring all municipal and county governments to develop land-based mitigation programs: the framework is thus best understood as a bottom-up administrative structure. In a rural context, such activities may take the form of enhanced tree protection ordinances or albedo requirements enacted through building codes. In reversing the primary administrative jurisdiction from local to state to federal, the coupling of a land-based mitigation framework with a conventional emissions mitigation framework more fully marshals the capacity of government at all levels to manage the climate change problem.

Most importantly, the recognition of land use mitigation in international agreements could render more effective programs for emissions reductions by expanding the range of mitigation activities. The promulgation and standardization of measures to fuel switching equivalencies by international bodies would provide signatory nations greater flexibility to meet binding reduction targets. This approach has the inherent advantage of maintaining CO2 as the global currency of climate change management, while an expanded array of mitigation activities may enhance the political feasibility of more aggressive reduction targets. At the very least, land-based mitigation may provide the most viable mechanism for addressing the likely shortfall between the emissions reductions required to avert catastrophic warming and the emissions reductions achievable through the international political process.

Such an approach may prove particularly advantageous in broadening international participation in climate change mitigation programs. Largely limited to CO2 control strategies under the present climate management framework, developing nations often lack the technological means to achieve significant emissions reductions. In such nations, large scale reforestation programs, if recognized through international agreements to generate benefits in the form of climate regulation, could attract significant international investment. The availability of remote sensing tools to monitor compliance with land-based mitigation agreements may render this approach more easily enforceable than carbon reduction agreements.

Land-based mitigation strategies further hold the potential to yield measurable climatic benefits over the period of one or two decades, in contrast to the much longer time period generally required for CO2 to cycle through the atmosphere. At the urban scale, as indicated by the data presented in Figure 1 and elsewhere (e.g., ref 23), urban governments may realize greater success in offsetting warming trends over the near-term through strategies designed to preserve development moisture and energy balances through emissions reductions alone. Aggressive vegetation and, in lower latitudes, albedo enhancement strategies must be recognized as a primary form of climate change mitigation in urban environments. Similarly, at the scale of regions, extensive reforestation efforts hold the potential to restore moisture and energy balances to pre-disturbance levels over a time scale measured in decades rather than in centuries (24).

Finally, international consensus on the scientific basis for climate change, including both the atmospheric and land surface agents of climate forcing, is critical to stimulating action at all levels of government. Despite compelling evidence that land use is having a more profound effect on the climates in which the majority of the U.S. population presently resides, climate management policies at all jurisdictional levels in this country are almost exclusively oriented toward emissions controls. This focus demonstrates the effectiveness of international climate accords in shaping domestic policy. Thus, in this period of an emergent post-Kyoto framework negotiation, a formal redefinition of climate change mitigation that encompasses land use strategies will provide an essential first step in combating the growing challenge of climate change on all fronts.

Brian Stone is an associate professor of city and regional planning at the Georgia Institute of Technology. Please address correspondence regarding this article to stone@gatech.edu.

Acknowledgments

The author acknowledges the valuable assistance provided by Jason Vargo in compiling and analyzing the urban and rural temperature trend data referenced in this study.

Literature Cited


(2) Pielke, R. A. Land use as climate change. Science 2005, 310, 1625.


